
28 September 2005

Dnmaloc: a more secure memory allocator

Yves Younan, Wouter Joosen, Frank Piessens and
Hans Van den Eynden

DistriNet, Department of Computer Science
Katholieke Universiteit Leuven

Belgium
Yves.Younan@cs.kuleuven.ac.be

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Overview

Introduction
Attacks
Doug Lea’s malloc (ptmalloc)
A Safer Allocator
Related Work
Conclusion

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Introduction

Many allocators ignore security
Performance and waste limitation is more

important
Many allocators can be abused to perform code

injection attacks
More security is possible at a modest cost

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Overview

 Introduction
 Attacks

Heap-based buffer overflow
Off by One/Off by Five
Dangling Pointer References

Doug Lea’s malloc (ptmalloc)
 A Safer Allocator
Related Work
Conclusion

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Heap-based buffer overflows

Heap memory is dynamically allocated at run-
time

Can also be overflowed but no return address is
available

Modify data pointers (IPO) or function pointers -
not always available

Modify the memory management information
associated with heap memory

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Off by one / Off by five

Special case of buffer overflow: limited space
needed

Off by one: write one byte past the bounds
Off by five: don’t occur often but demonstrate

low-space attacks
Usually only exploitable on little endian

machines
 (LSB is stored before MSB)

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Dangling pointer references

Pointers to memory that is no longer allocated
Dereferencing is unchecked in C
Generally leads to crashes (SIGSEGV)
Can be used for code injection attacks when

deallocated twice (double free)
A double free can be used to change memory

management information allowing an overwrite
of arbitrary memory locations

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Overview

 Introduction
 Attacks

 Doug Lea’s malloc (Linux)
 A Safer Allocator
 Related Work
 Conclusion

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Doug Lea’s malloc

GNU lib C malloc (ptmalloc) is based on this malloc
 Every allocation is represented by a chunk

Management information stored before the chunk
 Free chunks stored in doubly linked list of free chunks

 Two bordering free chunks are coalesced into a larger
free chunk

Description based on dlmalloc 2.7.2

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Doug Lea’s malloc

Size of prev chunk

Size of chunk1

Chunk
1

Chunk
2

User data

Size of chunk1
Size of chunk2

Old user data

Forward Pointer
Backward Pointer

High addr

Size of chunk1
Size of chunk2

Old user data

Forward Pointer
Backward Pointer

Size of chunk1
Size of chunk2

Old user data

Forward Pointer
Backward Pointer

Chunk
3

Chunk
4

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Backward Pointer

Return address

Heap Overflow (dlmalloc)

Size of prev chunk

Size of chunk1

Chunk
1

Chunk
2

User data

Size of chunk1
Size of chunk2

Old user data

Forward Pointer

Size of chunk1
Size of chunk2

Old user data

Forward Pointer
Backward Pointer

Size of chunk1
Size of chunk2

Old user data

Forward Pointer
Backward Pointer

Chunk
3

Chunk
4

Stack

Injected code

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Off by one (dlmalloc)

Chunk sizes are multiples of 8
 Size contains two flags mmapped and prev_inuse

 Two chunks must be next to each other (no padding)
for off by one

 Prev_size of next will be used for data

Overwrite 1 byte of the size and set prev_inuse to 0
and set a smaller size

Make a fake chunk, containing modified pointers

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Backward Pointer

Return address

Off by one (dlmalloc)
Size of prev chunk

Size of chunk1

Chunk
1

User data

Stack

Injected code

Backward Pointer

Chunk
2 Size of chunk2

Old user data

Forward Pointer

Size of fake chunk
Size of chunk2
Forward Pointer

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Dangling pointer
references (dlmalloc)

Size of prev chunk
Size of chunk

Old user data

Forward Pointer
Backward Pointer

Size of prev chunk
Size of chunk

Old user data

Forward Pointer
Backward Pointer

Size of prev chunk
Size of chunk

Old user data

Forward Pointer
Backward Pointer

Chunk
1

Chunk
2

Chunk
3

Return address

User data

Stack

Injected Code

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Doug Lea’s malloc conclusion

Vulnerable to:
Heap overflow
Off by one/five
Double free

Version 2.8.x contains some mitigation
techniques, see related work

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Overview

 Introduction
 Attacks
 Memory Allocators
 A Safer Allocator
 Related Work
 Conclusion

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Design

On most modern systems code and data are loaded
into separate memory locations

We apply the same to chunk information and chunks
Chunk info is stored in separate contiguous memory
 This area is protected by guard pages
 A hashtable is used to associate chunks with chunkinfo
 The hashtable contains pointers to a linked list of chunk

information accessed through the hashfunction
 Implemented in a prototype called dnmalloc (DistriNet

malloc), based on dlmalloc

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Modified memory layout

Text
Data
Bss

Chunks

Chunkinfo
Hashtable

Stac
k

Non-writable page

Non-writable page

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Dnmalloc: hashtable

Hashtable is stored before the stack in a mmaped area
big enough to hold it

 Each page is divided in 256 possible chunks (of 16
bytes, minimum chunk size)

 These chunks are separated into 32 groups of 8 chunks
 Each group has an entry in the hashtable, maximum 32

entries for every page
One element of the group is accessed through a linked

list of max. 8 elements

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Dnmalloc: hashfunction

 To find a chunk’s information from a chunk we do the
following:
Substract the start of the heap from the chunk’s address
Shift the result 7 bits to the right: gives us the entry in the

hashtable
Go over the linked list till we have the correct chunk

Ptr to chunkinfo
Hashtable

Ptr to chunkinfo
…

Ptr to chunkinfo

Chunkinfo
Hashnext
Forward

Backward
Size
Chunk

Chunkinfo
Hashnext
Forward

Backward
Size
Chunk

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Dnmalloc: Managing chunk
information

 A fixed area is mapped below the hashtable for
chunkinfos

 Free chunkinfos are stored in a linked list
When a new chunkinfo is needed the first element in

the free list is used
 If none are free a chunk is allocated from the map
 If the map is empty we map extra memory for it (and

move the guard page)
Chunk information is protected by guard pages

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Dnmalloc performance overhead
Spec CPU2000 results for dlmalloc and dnmalloc
(13 runs on 8 identical pcs (P4 2.8ghz, 512mb) = 104 runs)

Program Dlmalloc runtime Dnmalloc runtime Overhead percentage

gzip 253 +- 0 255.98 +- 0.01 1.18%

vpr 360.93 +- 0.16 360.55 +- 0.13 -0.11%

gcc 153.93 +- 0.05 154.76 +- 0.04 0.54%

mcf 287.19 +- 0.07 290.09 +- 0.07 1.01%

crafty 253 +- 0 254 +- 0 0.40%

parser 346.95 +- 0.02 346.61 +- 0.05 -0.10%

eon 771.05 +- 0.13 766.55 +- 0.11 -0.58%

perlbmk 243.20 +- 0.04 253.51 +- 0.05 4.24%

gap 184.07 +- 0.02 184 +- 0 -0.04%

vortex 250 +- 0 258.79 +- 0.04 3.52%

bzip2 361.64 +- 0.05 363.26 +- 0.07 0.45%

twolf 522.48 +- 0.43 513.27 +- 0.41 -1.76%

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Dnmalloc memory usage overhead

2 guard pages -> 8192kb
20 bytes of chunk information / chunk
1 page for the hashtable per 32 pages of

allocated memory
Overhead depends on the amount of chunks

and the size of the chunks
Overhead for dlmalloc: 8 bytes per chunk

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Overview

 Introduction
 Attacks
 Memory Allocators
 A Safer Allocator
 Related Work

 Robertson et al. heap protector
 Contrapolice
 Glibc 2.3.5

 Conclusion

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Robertson’s heap protector

Checksum stored in every chunk’s header
Checksum encrypted with a global read-only

random value
Checksum added when allocated, checked

when freed
Could be bypassed if memory leaks exist
Dlmalloc 2.8.x implements a slightly modified

version of this

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Overview

 Introduction
 Attacks
 Memory Allocators
 A Safer Allocator
 Related Work

 Robertson et al. heap protector
 Contrapolice
 Glibc 2.3.5

 Conclusion

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Contrapolice

Protects chunks by placing canaries (random)
before and after the chunk

Before exiting from a copy function, it checks if
the canary before matches the canary after

Could be bypassed if the canary value is leaked

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Overview

 Introduction
 Attacks
 Memory Allocators
 A Safer Allocator
 Related Work

 Robertson et al. heap protector
 Contrapolice
 Glibc 2.3.5

 Conclusion

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Glibc 2.3.5

 Sanity checks before doing operations on chunks:
Will not unlink a chunk if !(p->fd->bk == p->bk->fd == p)
Checks if chunks are on the heap
Checks if chunks are larger or equal to min size (16

bytes) and smaller than memory allocated up to now
Checks if the first element on the list is the one being

added or if it’s not in use (prevents double free)
 Prevents current attack techniques
Hopefully Daniel and I can solve that

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Overview

 Introduction
 Attacks
 Memory Allocators
 A Safer Allocator
 Related Work
 Future work
 Conclusion

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Future work

 Important limitation pointers stored on the heap are not
protected (also holds for other countermeasures)

 Possible solution: store pointers in a pointer-only area
Chunkinfo has 2 extra fields: pointerstart and

pointersize
Requires compiler modifications to ensure access of

correct memory
More analysis is needed: might break stuff

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Overview

 Introduction
 Attacks
 Memory Allocators
 A Safer Allocator
 Related Work
 Future work
 Conclusion

Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -

Conclusion

 Many allocators ignore security issues
 Safer allocators are not necessarily much slower
 This work is part of larger research where other important areas in memory

are also separated from normal data (currently working on a stack
implementation with a visiting researcher Davide Pozza).

 Which is part of my real research: a more methodical approach to designing
countermeasures

 Paper associated with this talk: Yves Younan, Wouter Joosen and Frank
Piessens and Hans Van den Eynden. Security of Memory Allocators for
C and C++. Technical Report CW419, Departement
Computerwetenschappen, Katholieke Universiteit Leuven, July 2005

 See http://fort-knox.org (also has other papers: master thesis on
vulnerabilities/some countermeasures, overview of all existing
countermeasures, paper on the methodical approach)

